triangular factorization造句
例句與造句
- We give the triangular factorization algorithm of toeplitz type matrices in the end
繼而推導toeplitz型矩陣的快速三角分解算法。 - We give the triangular factorization algorithm of loewner type matrices in the end
繼而推導loewner型矩陣的快速三角分解的算法。 - We give the triangular factorization algorithm of symmetric loewner type matrices in the end
繼而推導對稱loewner型矩陣的快速三角分解算法。 - It is mainly to some simple matrices to the research of the fast triangular factorization algorithms of special matrices up to now
對于特殊矩陣的快速三角分解算法的研究,目前主要是對一些較簡單的矩陣進行的。 - In 7 , we first give the definition of hankel matrices , then we give the triangular factorization algorithm of the inversion of hankel matrices
在7中,首先給出hankel矩陣的定義,然后推導hankel矩陣的逆矩陣的快速三角分解算法。 - It's difficult to find triangular factorization in a sentence. 用triangular factorization造句挺難的
- In 4 , we first give the definition of loewner type matrices , then we give the triangular factorization algorithm of the inversion of loewner type matrices
在4中,首先給出loewner型矩陣的定義,然后推導loewner型矩陣的逆矩陣的快速三角分解算法。 - In 3 , we first give the definition of toeplitz type matrices , then we give the triangular factorization algorithm of the inversion of toeplitz type matrices
在3中,首先給出toeplitz型矩陣的定義,然后推導toeplitz型矩陣的逆矩陣的快速三角分解算法。 - In 6 , we first give the definition of vandermonde type matrices , then we give the triangular factorization algorithm of the inversion of vandermonde type matrices
在6中,首先給出vandermonde型矩陣的定義,然后推導vandermonde型矩陣的逆矩陣的快速三角分解算法。 - In 5 , we first give the definition of symmetric loewner type matrices , then we give the triangular factorization algorithm of the inversion of symmetric loewner type matrices
在5中,首先給出對稱loewner型矩陣的定義,然后推導對稱loewner型矩陣的逆矩陣的快速三角分解算法。 - In this paper , we research some more general special matrices , for example , teoplitz type matrices , loewner type matrices , symmetrical loewner matrices and vandermonde type matrices , and so on . we respectively get their fast triangular factorization algorithms according to the character of these special matrices
本文研究更廣類型的一些特殊矩陣,如toeplitz型矩陣、 loewner型矩陣、對稱loewner型矩陣以及vandermonde型矩陣等,根據這些特殊矩陣的結構特點,給出了相應的快速三角分解算法。